Multi-Modal Inputs
Agents can process text, images, and files in a single request. This document covers how to send multi-modal inputs to agent methods.
Basic Usage
Agent methods (generateText, streamText, generateObject, streamObject) accept three input formats:
string- Plain text inputUIMessage[]- AI SDK's UI message format (used in chat interfaces and streaming)BaseMessage[]- AI SDK's model message format (alias forModelMessage)
Both message formats are from the AI SDK and re-exported by VoltAgent. To send images or files, use either message array format with structured content.
import { Agent } from "@voltagent/core";
import type { BaseMessage } from "@voltagent/core";
import { openai } from "@ai-sdk/openai";
const agent = new Agent({
name: "vision-assistant",
instructions: "Analyze images and answer questions about them.",
model: openai("gpt-4o"),
});
const messages: BaseMessage[] = [
{
role: "user",
content: [
{ type: "text", text: "What's in this image?" },
{
type: "image",
image: "https://example.com/photo.jpg",
},
],
},
];
const result = await agent.generateText(messages);
console.log(result.text);
Image Formats
Images can be provided as URLs, data URIs, or base64 strings.
Using URLs
const messages: BaseMessage[] = [
{
role: "user",
content: [
{ type: "text", text: "Describe this chart" },
{
type: "image",
image: "https://example.com/chart.png",
},
],
},
];
Using Base64
import { readFileSync } from "fs";
const imageBuffer = readFileSync("./photo.jpg");
const base64Image = imageBuffer.toString("base64");
const messages: BaseMessage[] = [
{
role: "user",
content: [
{ type: "text", text: "What's in this photo?" },
{
type: "image",
image: `data:image/jpeg;base64,${base64Image}`,
mediaType: "image/jpeg",
},
],
},
];
Using Binary Data
import { readFileSync } from "fs";
const imageBuffer = readFileSync("./photo.jpg");
const messages: BaseMessage[] = [
{
role: "user",
content: [
{ type: "text", text: "Analyze this image" },
{
type: "image",
image: new Uint8Array(imageBuffer),
mediaType: "image/jpeg",
},
],
},
];
File Attachments
For non-image files (PDFs, documents), use the file content type.
import { readFileSync } from "fs";
const pdfBuffer = readFileSync("./report.pdf");
const base64Pdf = pdfBuffer.toString("base64");
const messages: BaseMessage[] = [
{
role: "user",
content: [
{ type: "text", text: "Summarize this document" },
{
type: "file",
url: `data:application/pdf;base64,${base64Pdf}`,
mediaType: "application/pdf",
},
],
},
];
const result = await agent.generateText(messages);
Multiple Images
You can include multiple images in a single message.
const messages: BaseMessage[] = [
{
role: "user",
content: [
{ type: "text", text: "Compare these two images" },
{
type: "image",
image: "https://example.com/before.jpg",
},
{
type: "image",
image: "https://example.com/after.jpg",
},
],
},
];
const result = await agent.generateText(messages);
Streaming with Images
Streaming works the same way with multi-modal inputs.
const messages: BaseMessage[] = [
{
role: "user",
content: [
{ type: "text", text: "Describe this image in detail" },
{
type: "image",
image: "https://example.com/landscape.jpg",
},
],
},
];
const stream = await agent.streamText(messages);
for await (const chunk of stream.textStream) {
process.stdout.write(chunk);
}
Structured Output with Images
Use generateObject to extract structured data from images.
import { z } from "zod";
const receiptSchema = z.object({
total: z.number(),
items: z.array(
z.object({
name: z.string(),
price: z.number(),
})
),
date: z.string(),
});
const messages: BaseMessage[] = [
{
role: "user",
content: [
{ type: "text", text: "Extract the receipt details" },
{
type: "image",
image: "...",
},
],
},
];
const result = await agent.generateObject(messages, receiptSchema);
console.log(result.object);
// { total: 42.50, items: [...], date: "2024-01-15" }
Content Part Types Reference
These types are from the AI SDK and re-exported by VoltAgent for convenience.
When using message arrays, the content field can be:
- A
stringfor text-only messages - An array of content parts for multi-modal messages
Text Part
{
type: "text",
text: "Your text here"
}
Image Part
{
type: "image",
image: string | URL | Uint8Array, // URL, data URI, base64, or binary
mediaType?: string, // "image/jpeg", "image/png", etc.
alt?: string // Alternative text description
}
File Part
{
type: "file",
url: string, // Absolute URL or data URI
mediaType: string // "application/pdf", "text/csv", etc.
}
For complete type definitions, see the AI SDK documentation.
Model Support
Not all models support vision or file inputs. Check your provider's documentation.
Vision-capable models include:
- OpenAI:
gpt-4o,gpt-4o-mini,gpt-4-turbo - Anthropic:
claude-3-5-sonnet,claude-3-opus,claude-3-haiku - Google:
gemini-1.5-pro,gemini-1.5-flash
Image format support, size limits, and costs vary by provider. Refer to your model provider's documentation for details.
Error Handling
try {
const messages: BaseMessage[] = [
{
role: "user",
content: [
{ type: "text", text: "What's in this image?" },
{
type: "image",
image: "https://example.com/image.jpg",
},
],
},
];
const result = await agent.generateText(messages);
console.log(result.text);
} catch (error) {
if (error.message.includes("vision")) {
console.error("This model does not support image inputs");
} else {
console.error("Error:", error);
}
}
VoltOps Console
The VoltOps Console includes a chat interface with file upload support.
Click the attachment button (📎) to upload images or files. The console converts uploaded files to the appropriate message format (base64 data URIs) and sends them to your agent.
This allows you to test multi-modal agents without writing code for file handling.